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Abstract

We report crystal growth rate data from the melt for C50 and C100 obtained from non-equilibrium molecular dynamics simulations. This

extends our previous results for n-eicosane (C20) [Waheed et al. J Chem Phys 2002;116:2301]. We also construct a crystal growth model that

accounts for the thermodynamic driving force and relaxation time, using WLF theory and a small number of chemically specific quantities

that can be estimated from molecular dynamics simulations. Our model can predict growth rates as a function of temperature and molecular

weight, up to the entanglement molecular weight. Qualitatively, we see frequent adsorption and desorption of chain segments on the surface

in both C50 and C100 systems. We find evidence for a surface nucleus involving 4–5 chain segments that are approximately 20 beads long,

shorter than the ultimate thickness of the chain stem in the crystal, and involving segments from multiple chains. Treatment of relaxation

dynamics using the Rouse model and the reptation model does not yield a statistically significant difference within the limits of our data, but

the Rouse-based fit yields thermodynamic parameters that are in closer accord with those found from fits to experiments.

q 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Molecular simulation has become a very powerful tool

for understanding the process of alkane crystallization.

Simulation techniques such as lattice dynamics, Monte

Carlo, and molecular dynamics provide detailed infor-

mation that experiments have not yet been able to capture,

due to temporal and spatial resolution limitations of the

experimental techniques and the complications that arise in

the analyses of the complex morphologies of crystallizing

polymer systems. Through carefully constructed simu-

lations, one can independently observe nucleation [1–4]

and growth [5–8] during melt crystallization, the latter often

described as either layer or normal growth.

In an earlier report, we presented results from non-

equilibrium molecular dynamics simulations for crystal

growth rates of n-eicosane (C20H42, denoted here as C20), as

a first attempt to understand crystallization in polyethylene,

the prototypical polymer [8]. By simulating growth on a

pre-existing crystal surface under isothermal conditions
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(appropriate for cases, where heat transfer away from the

crystallization front occurs much faster than the progression

of the front itself), we avoided the long waiting times

associated with primary homogeneous nucleation and

directly observed the rate of growth of the n-alkane crystal.

Phenomenologically, one observes a maximum growth

rate at a temperature intermediate between the glass

transition temperature Tg and the melt temperature Tm.

This arises as a competition between a thermodynamic

driving force towards crystal growth, associated with

locking chains into crystallographic registry and which is

rate limiting at high temperatures, and the ability of chains

to diffuse to the new layer and rearrange themselves

conformationally to satisfy the restrictions of crystal

symmetry, which is rate limiting at low temperatures.

In experiment and modeling of the kinetics of alkane

crystallization, focus has been concentrated on growth rates

very near the melting temperature, where the growth of

these systems is optically observable. In this temperature

range near Tm, diffusion is not a limiting factor, which has

led to theory that accurately models the thermodynamic

driving force and its effect on kinetics [9,10]. This also

allows for studying the effects of chain length by

considering its effects on the melting temperature.

However, using molecular simulation, we are able to
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observe growth for a range of temperatures around the

temperature at which the maximum growth rate occurs.

Under these conditions, previous models for alkane crystal-

lization kinetics do not suffice since they generally do not

account for the reduced mobility at low temperature [11].

Models for the kinetics of polymer crystallization are more

capable of capturing this temperature dependence, because

it is a combination of thermodynamics and the constraints of

diffusion and chain connectivity that lead to the unique

chain-folded lamellar structure of melt-crystallized poly-

mers. However, growth kinetics are not particularly

sensitive to molecular weight for long, entangled chains,

and, therefore, polymer growth rate models typically do not

often have explicit molecular weight dependence.

For polymer crystallization, lamellar growth rates have

been shown to exhibit a temperature dependence which

matches that of the radial spherulitic growth rate, which in

turn has led to the correspondence between spherulitic

crystal growth and that of individual lamellae [12]. Growth

rates are of interest to the processing community, who

require accurate crystallization kinetic data over the entire

temperature range, in order to predict solidification under

process conditions and final fiber properties.

Several previous models have been suggested to account

for the temperature dependence of polymer linear growth

rates, based on different approaches. Based purely on

empirical evidence, Ziabicki modeled the dependence by

using a simple Gaussian function; this has become the

standard model in polymer fiber processing [13]. There are

several other approaches that have invoked a combination of

theory and empirical fitting. Gandica and Magill noted that a

corresponding states equation existed for crystallization

kinetics, whereby almost all data could be reduced to a

dimensionless ‘master curve,’ described by the maximum

growth rate, the melt temperature, and the glass transition

temperature [14]. Recent work by Umemoto and Okui has

extended this approach by using theory to yield a general

analytical form for the master curve and solving for the

maximum growth rate as a function of molecular weight

[15]. Van Krevelen followed a similar approach, using both

theory and empirical data, but was unable to find an

equation that would model satisfactorily the diffusion term

over the entire range of supercoolings [16].

Purely theoretical approaches have been based on

classical nucleation theory and vary according to the

concept of nucleation employed. While our simulations

are not yet equipped to parameterize such detailed

equations, they can provide insight into the validity of the

assumptions used in the models. The most sophisticated

model of secondary nucleation is that due to Hoffman and

co-workers, in which the crystallization process is limited

by the attachment of the first fully extended stem or, in later

work, localization of an adsorbed but unattached segment to

a smooth surface of the crystal [9,17]. Lauritzen and

Hoffman have extended this theory to large undercoolings

[18]. Three different regimes of growth have been predicted
and modeled for polyethylene [19]. Shorter chain lengths

favor what Hoffman termed regimes I and II growth, where

deposition occurs within a single layer. For the under-

coolings relevant to processing, however, the phenomena

observed are comparable to what Hoffman termed regime

III growth, or rough growth, where new chains nucleate on

steps, terraces, or kinks on the crystal surface. Mandelkern

also developed a model based on the idea that the formation

of a critical monomolecular nucleus is the limiting step in

the crystallization process [10]. Binsbergen provided early

criticism of both approaches [20]. In particular, he argued

that Hoffman’s assumption that the critical nucleus is a fully

extended chain ignores the fact that there are lower energy

paths to creating a new layer. Also, he questioned whether

Mandelkern’s assumption of an easily defined surface

nucleus makes sense, in light of the random attachment

and removal of segments that he believed would occur.

These criticisms were consistent with theories of growth

suggested by Point [21] and by Sadler and Gilmer [22], in

which the crystallizing surface might sample several

conformations before finding one that is stable and

contributes to growth. Keller et al. suggested that the

presence of a stable, highly mobile hexagonal phase for

polyethylene at high pressure might be indicative of an

intermediate mobile phase at the growth front that is capable

of lamellar thickening, in addition to lateral growth [23].

More recently, Strobl has introduced a model for crystal

growth, where a layer of ‘granular crystals,’ which develop

from a ‘mesomorphic’ layer of highly ordered melt,

precedes the formation of the final lamella [24].

None of these models are fully capable of describing

alkane crystallization rates over a wide range of tempera-

tures and molecular weights solely using parameters that

depend only on chemical architecture. Nevertheless a model

that retains its connection to molecular structure would

certainly be of benefit for purposes of product design; such

connection is possible using molecular simulations. In this

work, we attempt to retain this connection by extracting

meaningful rate parameters based on our molecular

dynamics results, with the goal being to provide rate data

that could be used in a continuum level model of

crystallization during fiber or film processing. To our

knowledge, this is the first such attempt to parameterize a

crystallization rate equation from simulations at the

molecular level. In addition, a molecular level approach

can possibly corroborate the assumptions of the many

conceptions of polymer surface nucleation, as well as their

predictions.

We use the same non-equilibrium molecular dynamics

(NEMD) technique as was used previously for C20 [8]. In

this work, we consider systems of the longer alkanes

C50H102 and C100H202, denoted C50 and C100, for the

purpose of studying the molecular weight dependence of the

crystal growth rate and to investigate additional character-

istics of the growth process, such as chain folding, that are
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observed in polyethylene crystallization, but that were not

observed in our n-eicosane simulations.

It is worth noting that these simulations are considerably

more time-consuming than those for C20, not only due to

the larger simulation cells required in order to avoid artifacts

of the finite simulation cell size, but also due to the longer

simulation times required in order to capture the slower

crystallization kinetics. Despite these limitations, molecular

dynamics, through its resolution on the atomic length scale,

provides information that cannot be obtained through any

other source. Therefore, it is our goal to use the atomic scale

information provided by molecular dynamics to parameter-

ize a phenomenological model of polymer crystal growth

that accounts for both temperature and molecular weight

dependence and does not rely on experimental sources to

parameterize chemical constants.
2. Method

2.1. Crystallization rate model

To recap our earlier report, our results for C20 were

readily described by an empirical equation due to Ziabicki:

GZGmaxexp K4 log 2
ðT KTmaxÞ

2

D2

� �
(1)

where Gmax is the maximum growth rate, Tmax is the

temperature at which it occurs, andD is the half-width of the

Gaussian curve [13]. However, despite its success in

capturing the temperature dependence of the crystallization

rate, it does not account for the effects of molecular weight

or provide any connection to the underlying phenomena. To

accomplish this, we develop the analytical form of the

crystallization model from scratch, following the arguments

described above in connection with combined theoretical/

experimental models.

To start, we take the usual step [9,16], originally

suggested by Turnbull and Fisher [25], of decomposing

the energy barrier into a thermodynamic part for the

formation of a critical nucleus and a diffusive part for

activated diffusion to the phase boundary. This allows for

the parameterization of the growth rate G in terms of energy

barriers to nucleation and diffusive hopping:

GZG0exp K
ED

RT

� �
exp K

DG�
2

RT

� �
(2)

where G0 is a pre-factor, ED is the barrier to diffusive

hopping, and DG�
2 is the free energy required to form a

critical two-dimensional surface nucleus. Much of the prior

work in this field has focused on the second, thermodynamic

term, which was formulated for a spherical drop by Gibbs

[26], and generalized by Turnbull and Fischer. The

temperature dependence of this term is readily observed

close to the melting point, where the process of
crystallization is nucleation-limited. For polyethylene

close to Tm [27], Mandelkern et al. observed the following

proportionality,

Gfexp
KKg

TDT

� �
(3)

where Kg is the surface nucleation constant reflecting the

ratio of surface energy to bulk energy of a critical volume,

and DT is (TmKT), the undercooling below the equilibrium

melting temperature. This constant Kg is a consequence of

general nucleation theory and is relatively independent of

molecular weight, since the surface energies and free energy

difference between the subcooled amorphous and crystal

phase are functions of the chemical properties of the

monomer unit only. This result was derived theoretically for

a general description of surface nucleation in polymers by

Binsbergen [20], and was applied to specific models of a

surface nucleus by Hoffman and Weeks [9] and by

Mandelkern [10].

The diffusive term, on the other hand, has not been

parameterized for alkanes; for polymers, it has been difficult

to find a relation that applies over a large temperature range.

Using Eq. (2), and the empirical data of Mandelkern et al.

for ED [27], van Krevelen proposed a crystallization rate

equation of the form:

GZG0exp KCD

T2
m

TðTm KTgÞ

� �
exp K

C

T

Tm
Tm KT

� �� �
(4)

where G0 is 10
12 nm/s, CD is a dimensionless constant with

a value of approximately 5 for most polymers, and C is a

characteristic constant for every polymer, containing the

ratio of the surface energy of a nucleus to the lattice energy

gained by crystallization [16]. In this equation, the

competing forces of secondary nucleation and thermal

diffusion are described in terms of Tm, the thermodynamic

melting point of a perfect crystal, and Tg, the glass transition

temperature, where diffusive motion is arrested, respect-

ively. One feature of this model is that it allows for

asymmetric curves for growth rate versus temperature,

something that Ziabicki’s empirical form does not capture.

However, this equation has not been applied to both the

diffusion-limited and thermodynamically-limited regions,

because of the inability to parameterize the diffusive term

over the entire temperature range. In addition, while there

has been some work to characterize the molecular weight

dependence of G0 [28], we wish to provide here a more

fundamental basis. Hoffman observed that ED should be

described by a Williams–Landel–Ferry (WLF) function for

Tg!T!TgC100 K [9], but invoked an Arrhenius relation-

ship for temperatures close to the melting point.

The original concept for the diffusive energy barrier in

Eq. (2) was the free energy of activation for short-range

diffusion of atoms moving a fraction of the atomic distance

to join the lattice [25]. In the limit that the free energy of

crystallization is large and negative, the thermodynamic
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term becomes negligible, and the rate of crystallization is

diffusion-limited. In classical reaction rate theory, a

diffusion limited reaction is parameterized in terms of the

self-diffusion constant D.

However, in alkane and polymer crystallization is it not

necessarily the translation of species towards the surface

that yields the predominant energy barrier, but rather the

conformational rearrangement (e.g. extension) of the chains

at the surface. To capture this, we parameterize the equation

as a function of the relaxation time of the segment of the

chain required for surface nucleation. This is the simplest

quantity that captures diffusive mobility for which the

temperature and molecular weight dependence is under-

stood. There are two factors that influence mobility: the

chemical properties of the monomer unit, and the number of

monomer units in the chain. Previous models have not

explicitly accounted for this fact, since for high molecular

weight polymers, the molecular weight dependence has

proven difficult to quantify. The molecular weight depen-

dence of the overall growth rate of entangled polymer

chains remains a matter of debate, with power law

exponents ranging from K0.5 to K1.8, often depending

on the temperature range [29]. For low molecular weights of

the order of MwZ104 g/mol, the scatter in the experimental

data has made it difficult to determine a relation [30].

However, for alkanes, by parameterizing in terms of the

relaxation time, we can account for both temperature and

molecular weight dependences. The mobility term is

described by the term G0, which is the diffusion-limited

rate for a reference chain, t0, the relaxation time for the

reference chain at some reference temperature, and t, the

relaxation time at the temperature and molecular weight of

interest. Themobility is related to the reference chain bya ratio

of relaxation times. The temperature and molecular weight

dependence of the thermodynamic term is well described by

the second exponential factor in Eq. (4). Combining the two

contributions results in a growth rate given by

GðT ;NÞZG0

t0

tðT ;NÞ

� �n

exp K
C

T

TmðNÞ

TmðNÞKT

� �� �
(5)

where the exponent n is included to account for uncertainty

regarding the dependence of crystallization rate on relaxation

time.

The relevant relation for the relaxation time near a

crystallizing surface is not clear from the literature. In

particular, the debate centers on the behavior of the

amorphous material near the crystal surface. It is generally

agreed that diffusion near a surface is more complex than

bulk diffusion [31]; however, the way in which the surface

affects dynamics is still a matter of debate. Some

researchers argue that the surface diffusion rates for short

chains near a surface can be described by Rouse dynamics,

where the relaxation time should have a power law

dependence of 2 in molecular weight [32]. However, there

is some indication that relaxation times of polymer chains
near surfaces exhibit a power law dependence of 3 in

molecular weight, indicating that chains with a 2D

conformation behave more like reptating chains than

Rouse chains [33].

Furthermore, a crystallizing surface is not the same as a

static surface, since it is constantly converting amorphous

material to crystal, and thus moving the surface forward in

accord with the chain conformation rather than requiring the

amorphous chains to conform to the (usually flat) shape of

the surface. By this argument, the amorphous material near

the surface still diffuses as in the bulk, where for chains

below the entanglement length (approximately 150 beads),

Rouse dynamics are expected. Rather than committing to

either assumption, we analyze our NEMD data here

according to both the Rouse and reptation models for

relaxation time.

According to Rouse theory, the longest relaxation time of

a polymer chain is given by:

tR Z
N2b2z0

3p2kT
(6)

where N is the degree of polymerization, b is the monomer

diameter, T is temperature and z0 is the monomeric friction

coefficient. The Rouse formulation applies to short chains in

an unentangled melt. Reptation dynamics, which are

observed in entangled systems, have a relaxation time

given by the following,

tD Z
N3b4z0

p2kTa2
(7)

where a is a primitive segment length, defined as the

distance between entanglements. In both Rouse and

reptation dynamics, the relaxation time can be captured by

the following general relation,

tðT ;NÞZ
CtN

mz0

T
(8)

where Ct is the constant containing the geometric and

physical factors, and m is the molecular weight dependence,

which is 2 for Rouse dynamics and 3 for reptation dynamics.

In a melt, z0 represents the force per unit velocity

required to move a monomeric unit through a sea of similar

polymer chains, and thus is itself dependent on both

temperature and molecular weight of the polymer [34].

The monomeric frictional force is closely related to the free

volume associated with a monomer unit in the melt, and,

therefore, exhibits a temperature dependence described by

the Williams–Landel–Ferry (WLF) equation:

ln
z0

z0g

� �
ZK

2:303c1ðT KTgÞ

c2 C ðTKTgÞ
(9)

where the WLF constants c1 and c2 are 17.44 and 51.66 K,

respectively [35]. The monomeric friction coefficient at the

glass transition temperature is z0g, which has negligible

dependence on molecular weight. The free volume at the
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glass transition temperature is considered a universal

parameter, because it represents an iso-free-volume state;

similarly z0g should be the same for any polymer at its glass

transition point [34].

By inserting Eq. (9) into Eq. (8), we find that the ratio of

relaxation times takes the following form,

t0

tðT ;NÞ
Z

N0

N

� �m

exp
2:303c1ðT KTgÞ

c2 C ðT KTgÞ

� �
(10)

where t0 is the relaxation time of a reference chain of a

certain molecular weight at the glass transition temperature.

The ratio of temperatures from Eq. (8) has been dropped, as

is done in WLF theory, because it is a lower-order

dependence and contributes negligibly to the temperature

dependence of relaxation time. Inserting Eq. (10) into Eq.

(5), we obtain the following final equation for the linear

growth rate:

GðT ;NÞZG0

N0

N

� �mn

exp
2:303nc1ðT KTgðNÞÞ

c2 C ðT KTgðNÞÞ

!exp K
C

T

TmðNÞ

TmðNÞKT

� �� � (11)

This results in a diffusive term that has a WLF

dependence, now adjusted by n. By tracing the WLF

dependence to the relaxation time, Eq. (11) obtains its

molecular weight dependence. In addition to the explicit

temperature dependence given by Eq. (11), the molecular

weight also enters the equation implicitly through the glass

transition temperature and through the melting temperature.

Although the Fox–Flory equation is usually used to relate

the glass transition and molecular weight, it does not hold

for low molecular weights. Therefore, we use an alternative

equation presented by Fox and Loshaek [36], which does

not present singularities at low molecular weights:

1

TgðNÞ
Z

1

TNg
C

Cg

TNg
� �2 1

N
(12)

where TNg is the asymptotic value of Tg at infinite molecular

weight, and Cg is a constant. Data on molecular weight

dependence of the melting temperature have been tabulated

[37] and are found to fit to the same form:

1

TmðNÞ
Z

1

TNm
C

Cm

TNm
� �2 1

N
(13)

where TNm is the asymptotic value of Tm at infinite molecular

weight and Cm is a constant. The constants Cg and Cm are

consequences of the chemical properties of the monomer.

Molecular simulation can be used to determine these

constants through a series of simulations. Methodology for

these simulations has been described elsewhere [3,8].

However, due to the large number of simulations that

would be required to model the dependency, in this work we

have treated them as fitting parameters in the solving of the

rate equation, which results in three fitting parameters for
Eq. (11), G0, C, and n, and the four parameters that charac-

terize the molecular weight dependence of the melting and

glass transition temperatures, from Eqs. (12) and (13).
2.2. Computational method

A united atom interaction potential is used, in which

polymer chains are represented by CH2 and CH3 beads that

interact through bonded and non-bonded interactions.

Previously, we have shown the importance of using realistic

potentials in modeling this process [2]. Accurate values for

the barriers between torsional states are essential in

capturing the balance between the orienting process and

the crystal packing process. It is the proper balance of these

forces that allows one to determine correctly which of

several credible mechanisms is the pathway to loop

formation. Therefore, our research focuses on modeling

the process using potentials that are well-parameterized for

polyethylene melt dynamics. We use the interaction

parameters for angles, torsions, and excluded volume

interactions calibrated by Paul et al. for united atom

polyethylene, where CH2 and CH3 beads behave identically

[38]. The total potential ETOTAL consists of several terms:

ETOTAL ZEBOND CEANGLE CETORSION CENONBOND

(14)

The harmonic bond length potential EBOND for bonded

atoms is given by

EBOND Z kbðrKreqÞ
2 (15)

where kbZ350 kcal/mol Å2 and reqZ1.53 Å. The harmonic

bond angle potential EANGLE for atoms separated by two

bonds is given by

EANGLE Z kqðqKqeqÞ
2 (16)

where kqZ60 kcal/mol rad2 and qeqZ1.91 rads (109.58).

The torsional or dihedral potential ETORSION for atoms

separated by three bonds is given by

ETORSION Z 1
2
k1ð1Kcosð4ÞÞC 1

2
k2ð1Kcosð24ÞÞ

C 1
2
k3ð1Kcosð34ÞÞ (17)

where k1Z1.62 kcal/mol, k2ZK0.867 kcal/mol, and k3Z
3.24 kcal/mol. All interactions between atoms separated by

three bonds are explicitly accounted for in the torsional

potential. For atoms separated by more than three bonds and

for atoms on different molecules, the non-bonded potential

EBOND is modeled by the Lennard–Jones relation:

ENONBOND Z 43½ðs=rÞ12 K ðs=rÞ6� (18)

where 3Z0.112 kcal/mol and sZ4.01 Å, and with a 12 Å

cut-off.

To model the secondary nucleation process specifically,

we create two crystal surfaces on the x–y planes of the

simulation cell. The crystal surface is modeled by an
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exponential fit to the surface potential calibrated by Steele

[39], using the Lennard–Jones parameters from the non-

bonded interactions. The details of the surface potential are

given in a previous paper [8]. The potential is periodic in

the x-direction, with a wavelength of 4.33 Å, and in the

y-direction with a wavelength of 2.5 Å. This creates a (110)-

like surface that is corrugated in x and y. The y-direction

corresponds to the c-axis of the crystal. The crystal exhibits

hexagonal packing normal to the c-axis of the crystal. In

Steele’s formulation, the strength of the surface interaction is

obtained by integrating over an infinitely thick crystal lattice,

yielding an effective carbon–surface interaction that is

stronger than the bare carbon–carbon interaction.

The simulations consist of 42 C50 chains, or 40 C100 in a

box of fixed x- and y-dimensions. In the z-direction, the box

dimension (the distance between the surfaces) is held at a

constant stress of 1 atm, in order to accommodate the

volume change associated with thermal contraction and

crystallization. The initial box size for the C50 simulations

is 25.9!65.0!39.3 Å3, and the initial configuration was

generated at a reduced density of 0.3 g/cm3 by growing each

polymer chain with fixed bond lengths, fixed bond angles,

and a torsional state of trans, gauche plus or gauche minus,

selected according to probabilities generated from a

Boltzmann weighting of the torsion angle potential at

400 K, discretized into the three rotational isomeric states.

Overlap during chain construction was avoided by rejecting

any steps that resulted in interatomic distances less than 5 Å

during initialization; in the event that numerous unsuccess-

ful attempts to grow a chain were encountered at the nth

united atom, it was deleted and the process started again

from the nK1’th atom, until all atoms were successfully

placed. The simulation cell was then equilibrated to bulk

density using molecular dynamics at 400 K and 1 atm for

1 ns. The C100 simulations started from a simulation cell

that was 52.0!80.0!31.3 Å3, after being equilibrated for

1 ns at 500 K. After the equilibration phase, the systems

were quenched below the melting point to begin the

crystallization process. Identical C50 samples were

quenched to 290, 300, 315, 330, 345 and 360 K. C100

samples were quenched to 350, 375 and 400 K.

For our previous study of C20 and for the simulation of

C50 here, the y-dimension of the cell was readily chosen

large enough to accommodate fully extended chains in the

crystal phase, and fully extended chain crystallites were

indeed observed to form, in accord with experimental

observations. Full chain extension during crystallization has

also been observed for C102 from solution at small

undercoolings [40], but at the large undercoolings used

here, the kinetics were expected to prevent the fully

extended crystallization of C100 from occurring. Therefore,

in the interest of shorter simulation time, the y-dimension of

our C100 simulation is only 8 nm, sufficient to allow for the

case of once-folded chains. However, our simulations were

not run long enough to clearly resolve such integer-folded

crystallites.
We integrate the equations of motion using the velocity–

Verlet integration algorithm [41]. We use a 5 fs time step,

which we have shown to be acceptable in our previous

work. There is a 10% error in the magnitude of the bond and

angle energies, which translates into a 10% increase in the

relaxation times. The simulation is conducted at constant

temperature, constant length in x- and y-dimensions, and

constant stress of 1 atm in the z-dimension. Constant

temperature and stress are maintained using velocity and

position rescaling as described by Berendsen et al. [42]. The

thermal inertial time constant tT and volume inertial time

constant tP used were 3.3 ps and 5.0!103 ps, respectively.

These inertial constants are relatively small, such that

temperature and stress fluctuate little throughout the

simulation. Crystallization kinetics are relatively insensitive

to the values of these constants in this vicinity. Constant

stress simulation is required to account for the volume

change associated with crystallization. The thermostat

ensures that the crystallization occurs under isothermal

conditions. Justification for this type of thermostat can be

demonstrated using a simple one-dimensional heat balance

adapted from Eder et al. [43] in which all of the heat of

crystallization is released to the melt. For values typical of

C20 (melt thermal conductivity of 0.01522 W/m K, latent

heat of crystallization of 16.9 kcal/mol, crystal density of

0.9361 g/cm3 and crystal growth rate of 0.1 m/s), the

temperature change over the length of a typical simulation

cell does not exceed 10K3 K.

The standard measure of order used in polymer systems

is the global bond orientation parameter at time t,

SðtÞZ
3h½niðtÞ,njðtÞ�

2i

2
K

1

2
(19)

where ni(t) is the orientation vector of atom i at time t,

defined by the chord from atom iK1 to atom iC1, and the

average is taken over all pairs i and j. However, in order to

calculate the spatial distribution of order within the

simulation cell, a local orientation order must be defined,

using convolutions of the local chain orientation vectors

with spatial box functions.

The orientational order at a particular z-value and time is

a function of the distribution of local order fn(z,t) as

described below,

fnðz; tÞZ
Xn
iZ1

niðtÞdðzKziÞ (20)

where zi is the z-component of the position vector of atom i.

For convolution, we use a box function g(ui)

gðuiÞZ
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(21)

where m is the convolution width. The orientation order



Fig. 1. Simulation cells for C50 and C100 systems, where simulated

surfaces are located at the x–y walls; (a) chain configurations for the 42 C50

chain system quenched to 330 K at times tZ0, 30, 60, and 90 ns, (b) chain

configurations for the 40 C100 chain system quenched to 375 K at times tZ
0, 20, 40, and 60 ns.
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density at z is computed by considering pairs of atoms

within the range of the convolution width, [zKm/2, zCm/2].

This is done by convolving fn(z,t) with g(ui) and g(uj),

yielding

sðz; tÞZ
3

2

ð
m=2

Km=2

ð
m=2

Km=2

Xn
jZ1

Xn
iZ1

ðniðtÞ,njðtÞÞ
2

"

!
1

m2
dðzKzi KuiÞdðzKzj KujÞduiduj

�
K

1

2
(22)

In order to obtain an average, analogous to the global

orientational order parameter S(t) in Eq. (19), we also need

to know the density of pairs of beads at z at time t, given by

n(z,t), the convolution of an atomic distribution with g(ui)

and g(uj):

nðz; tÞZ

ðm=2
Km=2

ðm=2
Km=2

Xn
jZ1

Xn
iZ1

1

m2
dðzKzi KuiÞ

!dðzKzj KujÞduiduj (23)

Now S(z,t), the convolved orientational order parameter, is

given by

Sðz; tÞZ
sðz; tÞ

nðz; tÞ
(24)

Choosing mZLz, the simulation cell z-dimension, reduces

Eq. (24) to the global bond order parameter S(t), as defined

in Eq. (19), while choosing a small value, such as mZ
0.5 nm, as we have usually done, yields S(z,t), the

orientational order parameter at a particular location z at

time t. An analogous convolution was performed in time

over a 1 ns box function, using snapshots at 10 ps intervals,

in order to filter fluctuations caused by individual bond and

angle movements.
3. Results

3.1. Molecular dynamics simulations

Once the systems have been quenched below the melt

temperature, the hallmarks of crystallization are almost

immediately observable near the simulated surface, for both

C50 and C100. Although these two systems manifest

similarities, there are also some differences that can be

immediately seen visually. Fig. 1(a) shows snapshots of the

C50 system at times tZ0, 30, 60 and 90 ns after quenching

to 330 K. Fig. 1(b) shows a similar set of snapshots for the

C100 system at times tZ0, 20, 40 and 60 ns after quenching

to 375 K. In both cases, the crystallization begins at the x–y

walls of the simulation cell, where the simulated crystal

surfaces (not shown) promote the addition of new crystal

layers. As shown in Fig. 1(a), the typical C50 simulation

first forms clearly defined, well-ordered layers of fully

extended chains at the x–y boundaries of the cell, layering
which proceeds throughout the volume of the simulation

cell. By 90 ns, the cell consists of 6 fully ordered crystalline

layers. Fig. 1(b), however, reveals a somewhat different

picture for crystallization of C100. The crystallization

process still proceeds through a sequence of layer ordering

stages starting at the x–y boundaries of the cell, but the

progression is much slower. By 60 ns, the crystallization has

not yet completely filled the simulation cell, and defects

persist within all layers, including those nearest the Steele

surface, until the end of the simulation. Rather than fully

extended chains as seen in C20 and C50, or once-folded

chains as seen experimentally near Tm in C100 at high

undercoolings, only sections of chains are extended and

packed.

The processes exemplified by Fig. 1 can be seen more

clearly if viewed layer by layer. Fig. 2(a) shows the three

layers closest to one surface of the cell, at various times for

C50. With this view, we can see that two processes are

occurring: ordering and extension of chains within a layer,

and the propagation of that order from one layer to the next.

For example, between 30 and 60 ns, the average length of

chain residing entirely in layer 1, not counting short

segments less than 10 beads long which appear to be

melt-like loops, increases from approximately 20 to 50,

through a process of drawing chains in from the melt. By

30 ns, one observes a band of partially extended, aligned,

all-trans chain segments, approximately 20 CH2 segments



Fig. 2. (a) The three layers closest to zZ0 plane for 42 C50 chains after

quench to 330 K at tZ0 ns. (b) The three layers closest to the zZ0 plane for

40 C100 chains after quench to 375 K at tZ0 ns.
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long and 6 chains wide (the entire width of the cell in the

x-dimension). In subsequent snapshots of the same layer, the

chains become fully extended and the chain ends move into

approximate registry through a process of chain sliding

(longitudinal diffusion) within the layer. Simultaneously, in

layer 2 at the next snapshot in time (60 ns), a similar band, 6

chains wide and 20 segments long overlays the ordered band

in layer 1, and the process of perfection though chain sliding

is repeated. A similar process appears to be occurring in

layer 3 sometime between 60 and 90 ns. The ordering within

a layer thus appears to be a stochastic process of drawing

chains in from the melt, bringing them into crystallographic

registry, and sliding them into different lattice positions to
increase the stem length, over a period of 60 ns for each

layer. Gauche states migrate away from the growing

nucleus, until they either transform spontaneously into

trans states or reach the chain end. Fig. 2(b) shows a similar

sequence of events for C100. Although slower than in the

C50 case and incomplete within the 60 ns of simulation,

small regions of order approximately 20 CH2 segments long

and 10 chains wide are nevertheless apparent in layer 1 in

the 20 ns snapshot and proceed to lengthen within the layer

in subsequent snapshots. In layer 2 at 60 ns, ordered regions

approximately 20 CH2’s long and 3 chains wide are only

just apparent. Surface nuclei form on the regions of the

previous layer that are crystalline.

We can estimate the distribution of partially extended

chain segments, thereby identifying the distribution of the

length of all-trans segments. We define a torsional state as a

trans state if the torsional angle lies between Kp/3 and C
p/3, where the maximums in the trans–gauche barriers are.

We use a convolution in time over a 1 ns box function to

reduce fluctuations. Fig. 3(a) shows the distribution of

sequences of consecutive trans torsions along a chain during

the course of the simulation of C50 at 330 K. Initially, the

trans torsional states are distributed in segments of length

ten CH2’s or shorter. With time, this distribution shifts

towards a population around 22 CH2’s long, through

accretion of approximately 3 beads every 4 ns. This process

of addition of beads appears to be stochastic over a period of

60 ns, by which time long-lived populations of all-trans

segments w22 and 50 CH2’s long are established.

Remarkably, at later times the shift in the distribution to

fully extended chains 50 CH2’s long occurs in a single,

large step, with very few all-trans segments of intermediate

length. This indicates that the jump from chain segments of

20 to 50 is activated, so that there is not a gradual shift in the

entire population of the stems as might be expected for a

diffusion-like process, but rather individual stems or groups

of stems grow in size fast enough that we do not observe

significant numbers of intermediate length stems over any

appreciable time.

In contrast to the C50 case shown in Fig. 3(a), the picture

suggested by Fig. 3(b) for the crystallization in C100 at

375 K is slightly different. Here too there appears to be a

stochastic process of accretion of all-trans segments over a

60 ns period. There remain a large number of short stems

throughout the course of the simulation, and the population

of longer stems is slow to develop; there is only a small

population of chains that have extended the full y-dimension

of the simulation cell, around 60 beads long. By the end of

the simulation, however, a peak for stems of length 20 does

appear to be developing, but the simulation is not long

enough to observe the increase in this population or any

subsequent activated jumps to longer all-trans segments.

In order to quantify this series of events, we evaluate the

order parameter S(z,t) for each layer. This is accomplished

by evaluating Eq. (20) at zZ0.45, 0.85 and 1.25 nm

from the x–y boundary for layers 1, 2 and 3, respectively,



Fig. 3. Distribution of all-trans stem segments over time for (a) 42 C50

chains quenched to 330 K at tZ0 ns; (b) 40 C100 chains quenched to 375 K

at tZ0 ns.

Fig. 4. Local order parameter S(z,t) as a function of time, over the

convolution width of 0.40 nm, at the locations of the three layers closest to

the simulated surface: zZ0.45 nm (layer 1, solid line); zZ0.85 nm (layer 2,

dashed line); zZ1.25 nm (layer 3, dotted line); for (a) 42 C50 chains

quenched to 330 K at tZ0 ns; (b) 40 C100 chains quenched to 375 K at

tZ0 ns.
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with a convolution width m of 0.4 nm. Fig. 4(a) shows the

results of this analysis over time for the first 3 layers for the

C50 case. Full ordering of the first layer is accomplished in

two stages, the first occurring between 0 and 15 ns, and the

second between 25 and 35 ns. Ordering in the second layer

begins concurrent with the second stage of layer 1. The large

increase in S(z,t), as it approaches its equilibrium crystalline

value for a given layer, is in part due to the increased

mobility of the chain ends, which are the last segments to be

drawn into the layer, and in part because as S(z,t) approaches

one, the layer is almost filled, and the periodic boundaries

enhance the stability of the ordered layer. Because of the

small system size, fluctuations in S(z,t) reflect the

conformational changes in individual stems; in a larger
simulation, we would expect these fluctuations to be

damped, as is the case in the larger C100 simulations,

shown in Fig. 4(b). One might expect the existence of a

critical nucleus size for secondary nucleation to be reflected

in a critical value for S(z,t), but this is not obvious from

Fig. 4. Such a critical value, if it existed, would be different

for the C50 and C100 simulations in any case, since the x–y

dimension differs for these two simulations (S(z,t) is

normalized by the total number of beads in a layer, Eq.

(24)). For the C100 case, we never observe a fully oriented

layer due to the fact that the y-dimension is only 8 nm,

sufficient only to accommodate stems up to length 60 CH2’s

without a defect. Thus, the dynamics of stem growth only up

to 1/2 the fully extended chain length can be studied in this

case. For this reason, the C100 simulation only obtains a

value for S(z,t) of around 0.55, indicating that part of the

layer does not crystallize. The behavior in this region is

analogous to the impingement of two surface nuclei, which

has been observed by Yamamoto [7].

The two different processes seen in Fig. 2, ordering

within a layer, and propagation of that order to the next

layer, can be quantified clearly in a three dimensional plot of

the order parameter S(z,t) versus distance and time. Fig. 5(a)
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shows the profile of the orientation parameter S(z,t), using a

convolution width of 0.5 nm. It reveals the growth front for

the C50 system after quench to 330 K, and its movement

with time. Initially, the simulation cell begins from an

amorphous state, and S(z,t) is approximately zero through-

out the cell. As the simulation progresses, order develops

first near the z-boundaries, as evidenced by the rise in S(z,t)

near zZ0 and 3.35 nm, and then propagates towards the

centerline of the cell. The growth front can be identified as

the z-region through which S(z,t) makes the transition from

amorphous to crystal. Fig. 5(b) shows the orientation profile

S(z,t) as a function of time for the C100 system after

quenching to 375 K. The movement of the orientation front

is slow but steady. The asymptotic limit of S(z) is near 0.90,

as the layers always contain some amount of disorder as the

stems impinge on themselves in the y-direction.

This order profile can be fit by a hyperbolic tangent

function, as described previously [8]. Since, there are two
Fig. 5. Progression of the orientational order S(z,t) growth front for (a) 42

C50 chains quenched to 330 K at tZ0 ns, and (b) 40 C100 chains quenched

to 375 K at tZ0 ns. The z-coordinate is the direction normal to the surface.

The convolution width is 0.5 nm. In each case, the contour at which the

order parameter is halfway between the crystal and melt values is

highlighted.
surfaces in the simulation cell, there are two growth fronts

moving towards each other. The entire z-profile, including

both growth fronts, can be modeled with two hyperbolic

tangents, as follows,

SðzÞZ 1
2
H1 CH2 K ðH1 KhÞtanhðl1ðxKx1ÞÞ
�

C ðH2 KhÞtanhðl2ðxKx2ÞÞ
�

(25)

where Hi is the asymptotic value of the order parameter for

the crystal growing at surface i, h is the asymptotic value of

the order parameter for the amorphous region between the

crystals, 1/li is the interfacial width of phase boundary i, and

xi is the inflection point of phase boundary i. Fitting is done

using a Levenberg–Marquardt non-linear least squares

algorithm. The movement of the inflection point xi is

approximately linear in time, in accord with experiments on

spherulites. The growth rate is given by the average value of

dxi/dt.

Approximately 75% of the change in the order parameter

between crystal and melt occurs in the z-region [xK(1/l),

xC(1/l)]. The width of the interface should be that of a

single layer if growth resembles regime I or II in Hoffman’s

analysis. Regime III growth occurs over many layers, and

should be reflected in a larger interfacial width. If a crystal

grows a single layer at a time, then the interfacial width

remains small. However, if there are multiple layers of

surface nuclei with terraces and holes to be filled, it will take

a larger value. Fig. 6 shows the time-averaged value of

interfacial width 1/l versus temperature for both C50 and

C100. Both sets of data follow the same trend, decreasing in

interfacial width with increasing temperature. In addition, it

is worth noting that the standard deviation from the average

value, which is a measure of the variability of the surface

roughness, shown by the error bars, is much less for C100

than for C50.

Using this analysis we can also measure the growth rates

for our simulations. We discard growth rates obtained at

very short times, where the static nature of the Steele

potential artificially accelerates the growth rate, and at very
Fig. 6. The average interfacial width of the growth front, as given by 1/li in

Eq. (25), as a function of temperature for the 42 C50 chain systems (C) and

the 40 C100 systems (!); error bars show standard deviations.



Table 1

Calculated parameters, and their standard deviations, for the model given

by Eqs. (11)–(13), assuming Rouse dynamics or reptation dynamics, for the

fits in Fig. 7

Parameter Rouse dynamics Reptation dynamics

Value SD Value SD

ln(G0 [m/s]) K37.9 16.1 K41.3 15.5

C [K] 439 197 855 217

n 1.49 0.44 1.79 0.43

TNm [K] 500 11 535 8

TNg [K] 346 36 302 43

Cm

[CH2$K]

4.78!103 398 5.46!103 468

Cg [CH2$K] 1.24!104 1224 8.70!103 1840
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long times, where impingement of the surfaces occurs; the

data presented are only in the range where the inflection

point xi in Eq. (25) is farther than the Lennard–Jones cut-off

length from either of these singularities. The movement of

the inflection points of the two growth fronts yields two

measures for the linear growth rate normal to the surfaces,

each one based on a linear fit to the front location versus

time. For C50, identical samples quenched to 285, 290, 300,

315, 330, 345 and 360 K provided data for the growth rate as

a function of temperature shown in Fig. 7, which reveals a

maximum in the growth rate near 347 K for C50. When we

apply the same analysis to the C100 systems, we obtain the

growth rates shown in Fig. 7 at each of the three

temperatures we simulated, with a maximum growth rate

occurring near 395 K. Previously obtained data for C20 [8]

is also plotted in Fig. 7 for comparison.
3.2. Crystallization rate model

In order to parameterize the crystallization rate model

presented above, a total of seven unknown parameters need

to be determined. There are three parameters in Eq. (11),

related to the rate processes, G0, C, and n. The parameter m

is assigned the value of 2 or 3 depending on whether Rouse

dynamics or reptation dynamics are assumed. There are also

four parameters in Eqs. (12) and (13) that capture the

molecular weight dependence of the phase transition

temperatures: TNg , Cg, T
N
m and Cm. In addition, we take

C20 as the reference, which gives G0 the interpretation of

the value for the diffusion-limited rate pre-factor for C20 at

its Tg, which is expected to be a small value. We performed

the seven parameter fit to Eq. (11) with Eqs. (12) and (13)

for Tm and Tg, respectively, using a Levenberg–Marquardt

non-linear least squares algorithm, with the standard error

propagation based on the uncertainty in the simulated
Fig. 7. Temperature dependence of growth rates, based on orientational

order, calculated from the movement of xi in Eq. (25). Average growth rates

are shown for the 102 C20 chain systems (C), the 42 C50 chain systems

(!), and the 40 C100 chain systems (*); individual growth rates obtained

for each surface are indicated by error bars. Lines show the fit of the model

equation, Eq. (11), to the growth rate data for each molecular weight,

assuming Rouse dynamics (solid lines) and reptation dynamics (dashed

lines).
growth rates. The resulting parameters and their standard

deviations are given in Table 1 for both the Rouse and the

reptation assumptions, and the best fit curves are plotted in

Fig. 7. Because G0 can change orders of magnitude during

the fitting process, it is fitted as an exponential, and the

standard deviation presented is the standard deviation of the

exponent. Data near the maximum crystallization rate is

better described by the curve, partly due to the lower

statistical error associated with the determination of these

values by molecular dynamics. Relative to the model with

Rouse dynamics, the model with reptation dynamics

compensates for the exponential factor mZ3 by increased

values of C and n, and a widening of the envelope in which

crystallization takes place, which evidenced by the Tg and

Tm values in Table 2 for each model.

Error analysis was conducted on the fits for the Rouse

and reptation models to determine if the difference in the fits

is statistically significant. The individual residual errors of

the fit were normalized by the measurement error at each

data point. Then a paired Student’s t-test was conducted on

the sample of 17 normalized errors using each model. The

resulting probability of the null hypothesis is 0.108,

indicating that the difference between the two models is

not statistically significant.
4. Discussion

Before discussion of these results, it should be reiterated

that the late stage of crystallization and completion of

ordering in each layer may be affected by the finite size of
Table 2

Values of the glass transition and melting temperatures, given by Eqs. (12)

and (13), for the model fits shown in Fig. 7, for both the Rouse dynamics

assumption and the reptation dynamics assumption

Length Rouse Reptation

Tg (K) Tm (K) Tg (K) Tm (K)

20 124 338 124 354

50 201 420 192 444

100 254 457 235 485
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the simulation cells, so the structure and dynamics of layer

completion are not analyzed in detail here. However, finite

size effects are expected to exert less influence on the early

stages of crystallization and initial ordering in each layer.

As mentioned in Section 3, the surface nucleus is small and

should not be affected by the periodic boundaries. In

addition, the development of the secondary nucleation event

in the subsequent layer occurs prior to completion of

ordering in the underlying layer, and thus should also not be

affected by finite size effects. Based on this observation, we

conclude that the simulated growth rates are only weakly

sensitive to finite size effects in these simulations.

The two models based on Rouse dynamics and reptation

dynamics were statistically equivalent fits to the data.

However, we can make some logical conclusions based on

the values of the fitting parameters for the two models.

Particularly noteworthy is the value of C in the reptation

case, which is much larger than what is typically observed in

nucleation-limited experiments. In addition, the predictions

for the melt temperatures in the Rouse-based model, given

in Table 2 are closer to the experimentally observed values

than in the reptation-based model. In earlier work [8], we

obtained a melting temperature of 345 K for C20 by direct

simulation, 35 K higher than the experimental value of

310 K. Glass transition temperatures are more difficult to

obtain, but recent simulation results with a similar potential

suggest a Tg of 280G32 K for a C768 chain [44]. Thus,

direct simulation overestimates these quantities by about

30 K, which can be attributed to limitations of the force field

and the simulation methods. Parameter-fitting of the

crystallization rates using the Rouse-based mode, on the

other hand, over-predicts the melting temperatures of C20,

C50 and C100 by 30–70 K, relative to the experimental

values (310, 365 and 388 K, respectively). Extrapolation of

the parameter fit for Eq. (12) to C768 yields a Tg of 330,

50 K higher than the simulated value. The larger errors in Tg
and Tm arising from parameter fitting can, therefore, be

attributed to approximations of the analytical model rather

than to errors in the simulations (or simulated growth rates)

themselves. Interestingly, the temperatures at which the

crystal growth rate is maximal according to the simulation

accords well with the ‘2/3’ rule of thumb when considered

in relation the glass transition and melting temperatures

listed in Table 2.

The interfacial width appears to be mainly a function of

temperature, rather than supercooling, with interfacial width

decreasing as temperature increases. The width of the

interface does not appear to depend explicitly on molecular

weight. However, because higher molecular weight poly-

mers have higher melting temperatures and glass transition

temperatures, the envelope in which they crystallize is

shifted to higher temperatures. Therefore, our MD results

suggest that higher molecular weight polymers would tend

to have sharper interfaces. The decrease of the interfacial

width with temperature reveals the gradual departure from

‘rough’ or ‘normal’ growth, where there are multiple layers
of nucleation, to ‘layer’ growth, where a single nucleation

site occurs in a layer, and growth occurs mainly through

addition on the terraces of that site. As temperature

increases, the interfacial width seems to level off around

0.25 nm, i.e. 75% of the change in the order parameter

occurs in a single layer. In the high temperature cases, it

seems that the process of removal of chains that have locked

into registry is energetically more likely, which leads to a

more ordered growth front. This is similar to a transition

from Hoffman’s rough regime III growth, to the more

ordered regime II. Comparing the results for C50 and C100

in Fig. 6, the longer chains crystallize fastest in the

temperature range where interfacial width is approximately

constant.

Some of the observations made regarding the mechan-

isms of ordering and propagation have implications for

secondary nucleation theory for alkanes and polymers.

Lauritzen and Hoffman assumed that the critical rate-

limiting step was a stem segment extending to a length

matching the underlying lamellar thickness or, in later work,

an adsorbed but unattached segment. In turn, they

parameterized the thermodynamics of this in terms of the

surface energy of the lateral surfaces and fold surfaces

associated with these steps. Estimates for the fold energy of

a polymer lamella are often made by applying this

assumption to measurements of spherulitic growth rates.

We have not seen any evidence of this full-length extended

stem nucleation; we observe the initial formation of surface

nuclei of stems of length 20. Similarly, Mandelkern’s

assumption of a monomolecular surface nucleus is also not

supported by these simulations; instead, we observe a

surface nucleus that involves several segments of different

chains locking into surface registry. This different picture of

growth has implications for the determination of surface

energies from the thermodynamic constant C.

We observe multiple chains adsorbing and desorbing on

the crystal surface. When a group of chains adsorb onto the

surface stochastically in the same area, a critical nucleus

may be formed. Although the nature of this surface nucleus

is difficult to characterize precisely, there are some

comments we can make based on general observation.

This surface nucleus does not involve chains extended to the

length of the underlying surface. It typically consists of a

group of chains that are 20–24 beads long and 4–5 chains

across at TZ330 K (C50) or TZ375 K (C100), correspond-

ing to the low temperature side of the growth rate curve.

This is in close agreement with predictions by Wagner and

Phillips [45] who estimated that the critical nucleus size for

polyethylene is 3–4 stems at TZ392 K, based on rate

measurements for polyethylene and ethylene–octene copo-

lymers. The stability of this critical nucleus depends on the

extra surface the nucleus has created, as Hoffman and

Mandelkern postulated from classical nucleation theory, but

it also depends on the number of defects within the nucleus,

and the topology of the melt to which the monomer beads in

the surface nucleus are connected. It is difficult to conclude



Fig. 8. Best fit equations for other growth rate models as a function of

temperature and molecular weight (lines), for the growth rate data shown:

the 102 C20 chain systems (C), the 42 C50 chain systems (!), and the 40

C100 chain systems (*). Molecular weight dependence is incorporated

through the transition points using Eqs. (12) and (13), as in our model: van

Krevelen’s model (solid lines); Strobl’s model (dashed lines).

Fig. 9. The effect of molecular weight and temperature on growth rates,

predicted by our model equation Eq. (11), for Rouse dynamics.
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whether the nucleation occurring on the surface is that of a

mesomorphic or metastable phase, as Strobl and Keller have

suggested, or whether the nucleus is temperature-depen-

dent; qualitatively, we did not observe significant differ-

ences in the surface nucleus at the different crystallization

temperatures. Nevertheless, it appears essential that the

initial nucleus is shorter than the fully extended stem length

in the final crystal and that it involves multiple chains. The

united atom force field used here crystallizes in a hexagonal

form, which exhibits the same symmetry as the proposed

mobile rotator phase in polyethylene. Binsbergen’s asser-

tion that polymer crystal growth is stochastic, involving

several addition and removal steps, may be applicable not

only to the addition and removal that creates a critical

nucleus, but also to the sliding movement of the chains that

allows thickening after the critical nucleus is formed.

Growth of a nucleus consisting of a group of chain segments

involves reorganization of the initial nucleus.

The energy of the fold surface of the lamella is often

assumed to be the energy of the ‘fold’ surface of the surface

nucleus, based on the fact that this is the surface through

which chain connectivity is maintained. However, this

surface of the surface nucleus does not compare well with

the lamellar fold surface. As surface nucleation occurs, there

do not appear to be any recognizable ‘folds’. The energy of

that surface can be better characterized as the energy

associated with changing the torsional conformation of the

chain from the crystalline all-trans state, to the Boltzmann-

weighted torsional states of the melt. It seems that it is not

until later that the final thickness of the crystal layer fully

develops. Thus, the surface nucleus we observe is

instrumental in determining the crystal growth rate, but it

may not determine the final lamellar thickness in polymer

crystals. In our C50 simulations the chains eventually

extend fully, while in the C100 simulations, they are limited

by impingement of the chains on their periodic image.

The model seems to capture the behavior of crystal-

lization rates well. It is less useful as means for determining

transition temperatures. Melting points can be calculated

from Monte Carlo simulations; both melting points [3] and

glass transition points [44] have been estimated using

molecular dynamics simulations. However, a larger number

of simulations would be required to capture the molecular

weight dependence effectively.

In addition to the crystallization model presented here,

we have also tested some of the models available in the

literature against our simulation data. We have fit the

equations of van Krevelen, Strobl, and Umemoto to our

C20, C50, and C100 data independently, and found that they

too capture the temperature dependence adequately. We

have checked these models for their molecular weight

dependence as well. Umemoto’s equations require an

empirical relationship for the maximum growth rate as a

function of molecular weight. Umemoto suggested a power

law dependence for this relationship [29], but based on our

simulation data, a power law relation does not capture the
molecular weight dependence of the maximum growth rate

in this range. Fig. 8 show a comparison of all our simulation

data at all three molecular weights to the best fit models of

van Krevelen [16] and Strobl [24]. Neither model includes

any explicit molecular weight dependence, but there is an

implicit dependence on molecular weight via the glass

transition temperature and the melting temperature. While

data at each molecular weight can be fit independently,

Fig. 8 shows that the neither of these models can fit the

entire range of data; there needs to be an additional

contribution due to molecular weight. The Rouse-based

alkane model, however, predicts reasonable trends in the

crystal growth rate as a function of molecular weight and

temperature; this is shown in Fig. 9.

Validation of these results from experimental obser-

vation is difficult, since our timescale of observation is much

shorter than that of experimental methods. However,

experimental and computational methods are beginning

to converge towards the same timescale. Recent works on

high speed crystallization have been able to measure

crystallization rates for polyethylene over a wide range of
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temperatures from the melting temperature to near the

temperature where the maximum rate occurs [45,46]. It is

worth noting that our predicted maximum crystallization

rate for C100 is on the order of 10K3 m/s, while experiments

indicate a maximum crystallization rate for polyethylene on

the order of 10K4 m/s. This is in the range of our model

extrapolations for the 150–200 chain length, as seen in

Fig. 9. Beyond the entanglement length (approximately

150–200 beads), we do not expect that Rouse dynamics

should be applicable; rather, reptation dynamics should

come into play. However, the relatively weak molecular

weight dependence of the maximum growth rate beyond the

onset of entanglements and agreement between the

predictions of our model for chains in the entangled regime

and the experimental data for polyethylene suggest that the

conformational relaxation of the length of the entangled

segment may be the relevant kinetic barrier for high

molecular weight polymers at large undercoolings.
5. Conclusions

In summary, we have constructed a crystallization model

that can be quantified entirely in terms of universal

properties of polymer chains and chemically specific

quantities that can be estimated polymer by polymer by

molecular simulation. Furthermore, we have for the first

time parameterized a crystallization model using molecular

dynamics simulations. The model predicts crystal growth

rates as a function of temperature and molecular weight up

to the entanglement molecular weight. We have studied

polymer crystal growth for C50 and C100 with non-

equilibrium molecular dynamics. Using techniques we have

developed to measure growth rates based on orientational

order, we have been able to quantify growth rates and make

qualitative comments about the likelihood of secondary

nucleation mechanisms. Error analysis reveals that there is

no statistically significant difference between the Rouse-

based model and a reptation-based model, but the

thermodynamic parameters for the Rouse-based model are

closer to those measured empirically.
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